What is implied volatility: how IV impacts crypto option premiums
Did you know that you can still lose money when trading crypto options despite prices moving in your favor? That's due to the impact of implied volatility (IV) on option premiums. With highs and lows that you usually see on roller coasters, the implied volatility of Bitcoin and Ether options can be tricky to navigate for anyone new to crypto options trading.
TL;DR
What is implied volatility?
How is implied volatility calculated? Explaining the Black-Scholes model
Current asset price: The current market price of the underlying asset.
Strike price: The price at which the option can be exercised.
Time to expiration: The remaining time until the option expires.
Risk-free interest rate: The interest rate earned on a risk-free investment like U.S. treasury bills.
Implied volatility: The market’s expectation of price volatility.
Weaknesses when relying on the Black-Scholes model
Market efficiency: The Black-Scholes model assumes efficient markets, meaning all available information is reflected in the option’s price. In reality, markets may not always be perfectly efficient since factors such as market sentiment, unexpected news events, or liquidity constraints can cause deviations from the Black-Scholes model's assumptions.
Volatility: The Black-Scholes model assumes constant volatility for the underlying asset. However, volatility can be quite variable, especially in crypto markets. As such, changes in volatility can significantly impact option prices.
Transaction costs: The model doesn’t account for transaction costs, which can erode trading gains if you’re actively entering and exiting positions.
Underlying asset assumptions: The Black-Scholes model assumes that the underlying asset follows a log-normal distribution. If this assumption is violated, the model's accuracy may be compromised.
Alternative option pricing models: Other option pricing models, such as the binomial option pricing model, can also be used to calculate IV. However, the IV represented by the Black-Scholes model is the predominant one that most traders adopt.
Factors affecting IV in crypto options
Market sentiment: Positive or negative news about a cryptocurrency can significantly impact its IV. A surge in positive sentiment often leads to higher IV, indicating increased price volatility expectations.
Time to expiration: As the expiration date of an option approaches, its IV tends to increase. This is because there’s less time for the underlying asset’s price to move significantly, increasing the likelihood of large price swings.
Volatility index: Indices like the Crypto Volatility Index (CVIX) can provide insights into overall market volatility, which can influence IV.
Interest rates: Changes in interest rates can impact risk-free rates and the pricing of options, indirectly impacting IV.
What's the relationship between IV and crypto option premiums?
What is IV crush?
If you’re new to trading crypto options, chances are you’ve heard of IV crush and how it affects option traders because of the swift decline in option premiums. IV crush occurs when implied volatility (IV) suddenly decreases, leading to a sharp drop in option prices. This can happen when a catalyst doesn’t result in the expected price movement or is less impactful than expected. Some examples of catalysts in the crypto world include huge network upgrades like the Dencun upgrade and regulatory changes like the spot ETH ETF announcement.
The role of catalysts and its impact on implied volatility
IV crush mitigation tips
Staying informed: Keep up-to-date with relevant news and events that could impact the underlying asset’s price.
Monitoring IV: Track changes in IV to identify potential signs of an IV crush.
Diversifying your portfolio: Don’t put all your eggs in one basket. Consider diversifying your options positions across different underlying assets and expiration dates.
Using stop-loss orders: Set stop-loss orders to limit potential losses if IV were to decline significantly.
How to analyze and interpret IV for crypto options
IV charts and indicators
IV percentile: This indicator shows how high or low IV is compared to its historical range. A high percentile suggests a relatively high IV level.
IV skew: This measures the asymmetry of the implied volatility curve, indicating potential biases in market expectations.
Using IV trends to identify trading opportunities
IV compression: When IV is high and then starts to decline, it's known as IV compression. This can be a potential buying opportunity for options as the premium may be inflated.
IV expansion: When IV is low and then starts to increase, it's known as IV expansion. This can be a potential selling opportunity for options as the premium may be undervalued.
IV volatility: Trading based on changes in IV itself can be a strategy. For example, a sesasoned crypto options trader may consider buying options when IV is expected to increase and selling them when IV is expected to decline.
Strategies for trading with IV in crypto options
Straddle: Buying a call and a put option with the same strike price and expiration can be used to make gains from significant price movements in either direction, regardless of the direction.
Strangle: Buying a call and a put option with different strike prices and the same expiration can be used to make gains from large price movements, but with a lower cost compared to a straddle.
Calendar spread: Buying an option with a longer expiration and selling an option with a shorter expiration can be used to make gains from changes in IV or the time value of the options.
Vertical spread: Buying and selling options with different strike prices but the same expiration can be used to create defined risk and reward profiles.
Final word and next steps
Keen to learn more about crypto options strategies? Check out our guide to the options wheel strategy that combines cash-secured puts and covered calls.
Appendix: Black-Scholes formula
C is the price of a call option.
P is the price of a put option.
S is the current price of the underlying asset.
K is the strike price of the option.
r is the risk-free interest rate.
t is the time to expiration (in years).
N is the cumulative distribution function of the standard normal distribution.
d1 represents the probability that the underlying asset’s price will end up above the strike price at expiration.
d2 represents the probability that the underlying asset’s price will end up below the strike price at expiration.
σ is the volatility of the underlying asset
FAQs
Historical volatility measures past price fluctuations, while implied volatility reflects the market's expectation of future price movements.
Implied volatility is typically calculated using the Black-Scholes model, which takes into account various factors like the option's price, strike price, time to expiration, and risk-free interest rate.
A higher IV generally leads to a higher option premium.
Some strategies include straddles, strangles, calendar spreads, and vertical spreads.
Contrary to popular belief, the Black-Scholes formula can be applied to crypto options. While there are some nuances and considerations specific to the crypto market, the underlying principles of option pricing remain the same.








